Мутность и прозрачность воды

  1. Мутность
  2. Современные мутномеры
Дата создания: неизвестна

Важным показателем качества воды, используемой практически для любой цели является наличие механических примесей — взвешенных веществ, твердых частиц ила, глины, водорослей и других микроорганизмов, и других мелких частиц. Допустимое количество взвешенных веществ колеблется в широких пределах, как и возможное их содержание. Взвешенные в воде твердые частицы нарушают прохождение света через образец воды и создают количественную характеристику воды, называемую мутностью. Мутность можно рассматривать как характеристику относительной прозрачности воды. Измерение мутности — это не прямое определение количества взвеси в жидкости, а измерение величины рассеяния света на взвешенных частицах.

Говоря простым языком, мутность — результат взаимодействия между светом и взвешенными в воде частицами. Проходящий через абсолютно чистую жидкость луч света остается практически неизменным, хотя, даже в абсолютно чистой воде, молекулы вызывают рассеяние света на некоторый, хоть и очень малый, угол. В результате, ни один раствор не обладает нулевой мутностью. Если в образце присутствуют взвешенные твердые частицы, то результат взаимодействия образца с проходящим светом зависит от размера, формы и состава частиц, а также от длины волны (цвета) падающего света. Хотя к настоящему времени разработано множество методов для определения загрязнений в воде, определение мутности по-прежнему важно, поскольку мутность — это простой и неопровержимый показатель изменения качества воды. Внезапное изменение мутности может указывать на дополнительный источник загрязнения (биологический, органический или неорганический) или сигнализировать о проблемах в процессе обработки воды.

Мутность определяют фотометрически (турбидиметрически — по ослаблению проходящего света или нефелометрически — по светорассеянию в отраженном свете), а также визуально — по степени мутности столба высотой 10–12 см в мутномерной пробирке.

Современные мутномеры

Большинство современных приборов определяют рассеяние под углом 90°. Такие приборы называются нефелометрами или нефелометрическими турбидиметрами, чтобы показать их отличие от обычных турбидиметров, которые определяют соотношение между количеством прошедшего и поглощенного света. Благодаря своей чувствительности, точности и применимости в широком диапазоне размеров и концентраций частиц, нефелометр был признан в «Стандартных методах» как предпочтительный прибор для определения мутности. Также предпочтительными единицами выражения мутности стали нефелометрические единицы мутности NTU. В опубликованных американским «Управлением по охране окружающей среды» «Методах химического анализа воды и стоков» нефелометрический метод также определяет нефелометрию как метод определения мутности.

Современные мутномеры должны определять мутность от предельно высоких до предельно низких значений в широком диапазоне образцов с частицами различного размера и состава. Возможность прибора определять мутность в широких пределах зависит от конструкции прибора. Три основных узла нефелометра (источник света, детектор рассеянного света и оптическая геометрия), различия в этих узлах влияют на определение мутности прибором. Большинство измерений проводятся в диапазоне 1NTU и ниже. Для этого требуется стабильная работа мутномера, малое количество постороннего света и отличная чувствительность.

В настоящее время в мутномерах применяются различные источники света, но самый распространенный — лампа накаливания. Такие лампы имеют широкий спектр, они просты, недороги и надежны. Свет от лампы количественно характеризуется цветовой температурой — температурой, которую должно иметь идеально черное тело, чтобы светиться таким же цветом. Цветовая температура белого каления и, следовательно, спектр свечения лампы зависят от приложенного к лампе напряжения. Для стабильного белого свечения лампы требуется хорошо регулируемый источник питания. В случаях, когда в образце присутствуют частицы одного типа, или если требуется источник света с известными характеристиками, для нефелометрии можно использовать монохроматический источник света. Такой свет излучает, например, светодиод.

После того, как свет с требуемыми характеристиками взаимодействует с образцом, результат должен быть зафиксирован с помощью детектора. В современных нефелометрах применяется четыре типа детекторов: фотоэлектронный умножитель (ФЭУ), вакуумный фотодиод, кремниевый фотодиод и фотоэлемент (фоторезистор) на основе сульфида кадмия. Чувствительность детекторов отличается в различных диапазонах длин волн.

Третий компонент, влияющий на качество показаний нефелометров — это оптическая геометрия, которая включает в себя параметры конструкции прибора, такие как, например, угол детектирования рассеянного света. Различия в строении частиц вызывает различную угловую интенсивность рассеяния. Почти все нефелометры, используемые в анализе воды и стоков, имеют угол анализа равный 90°. Кроме того, что такой угол обеспечивает меньшую чувствительность к изменению размера частиц, прямой угол дает простую оптическую систему с малым количеством постороннего света.

Конструктивным параметром, определяющим, как чувствительность, так и линейность прибора, является длина оптического пути. С ростом оптического пути растет чувствительность, но в ущерб линейности показаний из-за множественного рассеяния и поглощения. И наоборот, с уменьшением длины оптического пути растет линейность, но падает чувствительность прибора в области низких концентраций (проблему можно решить, применив изменяемую длину оптического пути). Короткий оптический путь также увеличивает воздействие постороннего света. USEPA и ИСО требуют, чтобы длина оптического пути не превышала 10 см (от нити накала до детектора).

В некоторых турбидиметрах для достижения максимальной стабильности используют комбинацию оптических устройств: детектор, расположенный под углом 90°, комбинацию детекторов проходящего света, прямого и обратного рассеяния и зеркала, отражающие только ИК излучение. В практических применениях помехи и погрешности представляют серьезную проблему, поскольку снижают точность любого прибора. Чтобы убедиться, что прибор работает должным образом и обеспечивает наиболее верный результат, важно проверять калибровку прибора.